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Abstract. In earlier studies, it was found that for terbium overlays on Ni(ll1) and Fe(lO0). the 
subsvates induced some ferromagnetic ordering m the rare-earth film, at temperatures above 
the Tb Curie temperature. A study is given of the magnetization of fenomagnetic films 
on fmmagnetic substrates, at temperatuns below both Curie temperatures. Expansions are 
developed for the magnetization within the film as a power series in the distance z to the 
interhe. using Ginzburg-Landau &ry. Smpirical data for Tb and gadolinium films are found 
fo be consistent with the general form of the expressions found h m  lhe theory. Relations are 
derived for the observed expansion coefficienU in terms of the Ginzbq-Landau parameters of 
the film material. The form o/z for the magnetizuion is predided to represent the magnetization 
well, for I located in an experimentally accessible range of values; data for the magnehtion 
are consistent with this form. 

1. Introduction 

In a previous paper [l], we modelled the spatially dependent magnetization M(r), as 
determined by the 5 ~ 3 1 2  shallow core level branching ratios in different photoemission 
geometries. We found that the mean-field Ginzburg-Landau theory could be used to explain 
our results for Tb on Ni(l11) and the results of Paul el a1 [2] for Tb on Fe(lOO), considering 
in both cases results for the case T > Tc, where TC is the Curie temperature for Tb. 

Data have also been obtained for the relative magnetization, as a function of thickness, 
for Tb overlayers on Ni(ll1) [1,3] and for Tb overlayers on Fe(100) [21, for T < TC of Tb. 
We wish to ascertain whether these experimental data can also be readily modelled using 
Ginzburg-Landau theory. There are a number of theoretical studies in which the spatially 
dependent magnetization M(r)  has been described for films, alloys, and ferromagnetic 
multilayers by applying the Ginzburg-Landau formulation [ I ,  4-15]. In particular, Schwenk 
et a1 [141 have computed the magnetization profile in periodic alternating layers, made. 
up of two ferromagnetic materials of differing transition temperatures. Analytical results 
are presented over the entire temperature range, and for thicknesses including the case 
of ultrathin layers. Also, Camley and Tilley [ l l]  apply the Gmburg-Landau theory to 
a sandwich of two ferromagnetic materials, which couple anti-ferromagnetically at the 
interface. They study the magnetic superlattices formed, applying their results to T = 0. 
However, only a few examples exist where experimental data for simple metal overlayers 

* Part I appeared as [l]. 
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have been successfully modelled in this manner [1,3,4,16-19]. Of particular interest to us 
are rare-earth overlayers on ferromagnetic substrates. 

The starting point of the Ginzburg-Landau theory is the expansion of the free-energy 
density in a power series in the order parameter. For our case, the order parameter is the 
magnetization vector M(r). In order that the expansion be valid, it might appear necessary 
that the magnetization be reasonably small, i.e. that the temperature be not far from Tc 
[20]. Nonetheless, the theory has been applied successfully over a wide temperature range 
to a diversity of physical systems, as noted in the preceding paragraph. It has been found 
that truncation of the expansion, at say, the fourth power of the magnetization vector, still 
allows a good modelling of data, at temperatures well below the transition. A purpose of 
this study is to examine how well the magnetization data below the transition temperature 
for Tb overlays can be modelled by Ginzburg-Landau theory. 

A Miller and P A Dowben 

2. Experiment 

The experiments were performed in an ulm high vacuum (UHV) system equipped with 
a hemispherical analyser for angle-resolved photoemission and a retarding-field analyser 
for low-energy electron diffraction as described previously [21]. The light source for the 
photoemission studies was the 1 GeV ring at the Synchrotron Radiation Center, dispersed 
by 3 m and 6 m toroidal grating monochromators. The energy resolution (analyser and 
monochromator) of the phoeoemission spectra collected by the hemispherical analyser varied 
from 0.15 to 0.3 eV full width at half maximum. 

The incidence angle of the light is defined with respect to the surface normal. A normal 
light incidence angle (zero degrees) has a vector potential completely parallel to the surface 
(s-polarized) while glancing-incidence light has a large component of the vector potential 
normal to the surface (p-polarized). Photoelectrons were collected throughout this work 
normal to the surface to preserve symmetry selection rules. 

The manner in which the Tb or Gd 5p core levels depend on light polarization was 
measured qualitatively on a relative scale from the ratio of 5~112 intensity divided by the 
5p3p intensity for p-polarized and s-polarized light (p,,/pJ as previously described [I]. 
This is denoted as the p-level anisotropy. The photon energy was typically about 20 eV 
above threshold (60 eV) to enhance the 5d-5p final state effects [21,22]. 

The p-level anisotropy is not normally expected to deviate from unity for non-magnetic 
systems [1,3,22] but some deviations, as a result of clystal field effects, have been noted 
[I]. The major deviation from unity of the p-level anisotropy, as noted before [I], is a result 
of magnetic ordering. 

For Gd on Cu(100). the results shown in this work are a summary of more conventional 
dichroism measurements obtained from constant-initial-state spectroscopy as described 
previously [21,221. Such measurements have been typically applied to deeper core levels 
of the rare earth than the 5p levels [23-251. 

3. The differential equations for the magnetization 

We begin with the differential equations satisfied by MI, and ML in the Ginzburg-Landau 
formulation [ZO, 26,271: 
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where the magnetization vector is M(r) = Ml(r)ill + M L ( r ) i L ,  so that MII and ML are 
the components of M that are parallel and perpendicular to the interface, respectively. 
The coordinate z is the distance of the considered plane in the overlayer film to the 
interface. Hence, 0 < z 4 D, where D is the film thickness. The symbols HP and in 
equations ( I )  and (2) denote the parallel and perpendicular components,.respectively, of the 
demagnetization field. The coefficients A, B and C are temperature-dependent parameters; 
it shall be assumed that their spatial dependence is negligible. In order that the free energy 
have a minimum, it is necessary that both B and C be positive. For T > Tc, A is positive: 
for T c Tc, A is negative. The latter case will apply in this study. 

Equations (1) and (2) are derived by starting from the Ginzburg-Landau expansion 
of the Helmholtz free-energy density f ( r )  as a power-series in the components of the 
magnetization M(r) and its spatial derivatives. It is then required that the free energy F 
attain minimal value when M(r) reaches thermal equilibrium. 

If terms in f ( r )  beyond the fourth power of M are ignored, equations (1) and (2) 
are obtained for the static magnetization M(r). This truncation is quite prevalent in the 
literature [ 1 I ,  14,20,26,27] for temperature both below and above the Curie temperature. 

Since the lateral dimensions x and y of the overlayer greatly exceed the film thickness 
D, we can properly assume that M depends on z ,  but not on x or y. Furthermore, 
experimental studies of ultra-thin ferromagnetic films [17,28] suggest that experimental 
investigations of Tb overlayers [ 1-31 sample only a single domain consistent with spin- 
polarized photoemission of Gd [29]. If the sample also includes a ferromagnetic substrate 
with a single domain, the magnetization vector M(r) is along the easy axis of magnetization 
of the substrate. We are here assuming that the film is a linear magnetic material with its 
magnetization parallel to the inducing field of the substrate as is consistent with spin- 
polarized photoemission studies [29]. 

Equations (1) and (2) can be simplified. Since the applied field H = 0, we can concem 
ourselves solely with the demagnetization field Hm given by 

P = B - 4 z M ( r )  (3) 

where the vector €3 is the magnetic induction vector. 
The relevant Maxwell's equations become 

V x H m = O  (4) 

and 

V . B  = 0 = V. (Hm f4irM).  (5) 

These equations are identical to those of Schwenk et al [14]. Since M ,  B and P can 
depend upon z but not x or y ,  the most general solutions to these Maxwell's equations are 
that 

Hm = (O,O, - 4 ~ M i )  + C (6) 

where C is a spatially constant vector. Schwenk et al [141 tacitly assume C = 0. If C # 0, 
then Hm and B would be non-zero for z -+ CO. 
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We shall also assume that the magnetization for Tb films on Ni(ll1) and Fe(100) is 
in-plane. There is particularly strong evidence for this result in our experimental study of 
paramagnetic Tb overlayers; there is no evidence of a substrate-induced normal component 
[l]. For paramagnetic Tb [l-31, as z + CO, M(z) + 0: this would not occur if the 
substrate-induced field applied to the overlayer had a substantial component normal to the 
surface, since 

M = m i 8 N ( E ~ ) .  (7) 
This experimental results for paramagnetic Tb is not surprising since for both Fe(100) and 
Ni( 1 1  l), these surfaces also represent the ‘hard‘ (magnetization) directions while the other 
low-index faces are also the directions that are ‘easy’ [30]. Thus the magnetization for 
these surfaces lies ‘in-plane’ [l]. Secondly, the measurements for Tb on Fe(100) by Paul, 
Landolt and coworkers [2,  181 are sensitive only to in-plane magnetization. It may also be 
remarked that experiments for Ni on Cu(ll1) [31] and for Fe on Au(100) [32] find in-plane 
magnetizations. 

Let Fm(M) denote the connibution to the free energy F due to the demagnetization 
field H”; then F”(M) is given by the expression 

F y M )  = -f M .  P d r 3 .  (8) s 
Inserting Hm = (0, 0, - 4 z M ~ ( z ) )  into this integral results in 

Fm(M)=-f  s M ~ H ~ d r ~ = 2 l / M ~ d r ’ .  19) 

This integral is never negative and is smallest when ML = 0. If the anisotropy energy can 
be ignored, then equation (9) contains the dominant dependence of the free energy on ML;  
hence M L  = 0. Thus the magnetization is in-plane. From equation (6) ,  using C = 0, the 
result Hm = 0 is attained. The arguments encompassing the discussion from equation (3) 
to equation (9) are similar to those of Schwenk eta! [14]. The geometry differs somewhat 
from that of the present experiments in that their concem is that of a periodic series of 
multilayers, while we have undertaken our experiments for simple overlayers [l]. None the 
less, in both geometries, the fact that the magnetization is independent of x and y is clew 
the equilibrium results Hm = 0 and M L  = 0 follow. 

The anisotropy contribution to the free energy could include terms such as 

with L a positive constant and f i  as the unit vector normal to the interface. This would 
favour lining M up along the normal to the plane to make Fms(M) = 0 (its smallest 
value) if L is positive. For ferromagnetic Gd on W(110). there are strong indications that 
this anisotropy is very small [17,29] and is insufficient to orient M along the surface normal 
on this paramagnetic substrate. Estimates of this anisotropy energy for other ferromagnetic 
overlayers also suggest this energy to be quite small, some 0.5 meV or less [31,33]. It is 
reasonable that the substrate field will swamp out such an anisotropy since the substrate has 
more moments, is ferromagnetic, and the film must grow atom by atom. 

With the above assumption that M is in-plane, equation ( 2 )  can be ignored and we can 
rewrite equation (1) as 

Henceforth, we shall replace M I I ( Z )  by M ( z ) .  



Magnetic ordering of rare-earih overlayers: I1 

Terbium Thickness ( A I  

5463 

Figure 1. The p-level anisotropy data for Tb on Ni(ll1) at m m  temperature (+) and at 170 K 
(~3) as a functlon of film thickness, as given in [l]. For T > Tc the dam are fitted to an 
exponential profile while for T c Tc. M(z) = a fz. wiIh (1 as a conslant (see equalion (24) and 
the discussion following it). 

4. Formal solution of the differential equation 

It is convenient to replace M ( z )  in equation (11) by the dimensionless magnetization m(z) 
defined by 

where, M(m) is the bulk magnetization of the material of the film and is given by 
( l A l / 5 ) ’ / 2 .  That this is so follows immediately from the solution for M ( r )  obtained by 
deleting the first term of equation (1 1). The latter equation is now 

(1/K2)dZm/dz2+m-m3 = O  (13) 

with K defined by K’ = (lAl/C). The parameter 5 is absent from equation (13) but 
maintains its presence via equatlon (12). Note that m(w) = 1; hence if data for large z are 
available for any quantity proportional to M, the data allow determination of m(z) for all z 
covered by the experiments. The proportionality constant need not be known. 

The first integral is 

(l/c2)(dm/dz)2 + mz - m4/2 = s/2 (14) 

where s/4 is the integration constant obtained by integrating equation (13). 

integral: 
Then, the formal solution of equation (13) for T < Tc follows by taking the second 

(noting that z = 0 is the interface plane). The data for Tb on Ni(ll1) [I] and for Tb on 
Fe(100) [21, presented in figures I and 2 respectively, show that m(0) z m(z) and that m(z) 
monotonically decreases with z. As a result, equation (15) requires the positive sign on the 
right hand side, for these data 
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Figure 2. The Giwbur-hdau model fitted to the 
Auger electron polarization data for Tb on Fe(1W). 
take. f" 121. Dan for rorrm temperature (+I 
and 170 K (0) have been plotted. The measured 
quantity ]Pel is proportional 10 the magnetization 
m(r) .  The data at 300 K axe modelled by 
equation (U). while those taken ai 170 K are 
modelled by equations (16). (17) and (18). 

As is the case for T Tc, for T < Tc, the solution of equation (15) can be cast in the 
form of incomplete elliptic integrals F(@, k) of the first kmd The forms are given in the 
appendix. 

Khan 1341 has derived a result equivalent to equation (15) and has also expressed the 
integral in terms of Jacobi 0 functions. Our results in the appendix are formally equivalent 
to those of Khan. In addition, Wintemitz er a1 1351 have obtained exact solutions of the 
thm-dimensional analogue of equation (1  1). These latter solutions are important for cases 
in which lateral-plane symmetry (corresponding to the geometries considered here) is not 
present. 

The formal solutions just cited admit a power-series expansion: 

The lower sign in equation (17) is applicable to the data for the reasons cited below 
equation (15). 

Measurements of the magnetization profile allows extraction of values for K and s, using 
equations (17) and (18). provided there are extensive data for large z. As already noted, 
m(z) is the magnetization in units of that of the bulk. Analysis of the data allows values 
for mo, ml and mz to be obtained. 

Equations (17) and (18) yields K = (IAI/C)i'2 and s, while lAl/B can be obtained from 
inspection of data for the magnetization cutve M ( T )  for bulkTb, using M ( T )  = ( l A l / B ) l / 2 .  

Note that thermal equilibrium data for the magnetization of Tb films or for bulk Tb 
cannot be used (in the absence of an externally applied magnetic field) to ascertain values 
for A, B and C separately; the differential equation for M ( z )  is sensitive only to the ratios 
IAIIB and IAl/C. 
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The meaning of the integration constant s can be clarified by first noting that s -+ 1 
as D -+ CO. The latter fact can be seen from inspection of equation (14); let z -+ CO and 
note that m(z)  -+ I and dm/dz + 0. Now, for D e CO, note that at the free surface of 
the film, the number of nearest neighbours of the atoms is reduced; exchange energies are 
altered. For this reason, m(z, D )  may have a weak dependence on D, for fixed z. (Here, 
m(z, D )  denotes m(z)  for films of thicknesses D, and z 6 D.)  Inspecting equation (15) 
shows a weak dependence of either s or m(0) on the thickness D. 

Since the value of m(0) is likely to be dominated by the magnetization of the substrate 
relative to film-material bulk magnetization, s must be dependent on D. If m(z ,D)  
decreases as D decreases (z fixed), then s must slowly increase to keep the left hand 
side of equation (15) unaltered. 

A simple form for m(z), valid over a restricted (but accessible) range of z, can be 
derived by writing equation (16) in the form 

m(z) = - (mi/mlz)( l  + J / z  + N z  + Qzz +. . .)-’ (@a) 

where J = -mo/ml and N = (m2mo - m:)/moml. 
If z can be restricted to a range of values for which J / z  << 1 and also Nz << 1, then 

a = (V(ri/~)(l  - 2 , ” ~ + s / m ~ ) - 1 / 2 .  (21) 

Ifs does not greatly deviate from unity, then a Y &/K is obtained, since mo > 1. 
The condition on the validity of equation (20) can be rewritten: 

m;‘ << ~ ~ l f i  << mo. (22) 

The discussions of equations (1 I)-@) apply to T e Tc for magnetizations in plane, 
appropriate for the data considered in this study. However, for the magnetization normal 
to the surface, i.e., Hi” # 0, there exists a special solution for M(z) in this geometry that 
can be noted. Equation (1 1) can be replaced by 

- C(d2Mi(z)/aZz) + AML(z) + BM:(z) = -4ZMl(Z) (23) 

from substitution of equation (6) into equation (2). Clearly, &4l(z) = h / z  is a solution to 
this differential equation if A = -4n and if the constant h satisfies 2C = BhZ. This result 
IS consistent with the results of Tuszynski and coworkers [ 15.361. 

5. Comparison with data 

The results for Tb films plotted in figures 1 and 2 are obtained by photoemission or Auger 
spectroscopy. These are surface-sensitive probes under the conditions employed [l,  21. The 
simplest assumption is that Mli(z = D, D)  was measured. Here, M,,(z,  D )  is the in-plane 
magnetization at plane z, for a film of thickness D. We add the plausible assumption that 
M I I ( Z ,  D)  depends dominantly on z, and only weakly on D. This assumption is buttressed 
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by the fact that the data encompass only a narrow range (five monolayers, at most) of values 
of D. Thus, M(z) = Mil(z, D) can be approximated by the measured values of MII(Z, 2). 

For an explicit comparison between theory and data, we first note that we have 
recently introduced a technique for probing local magnetic ordering using conventional 
angle-resolved photoemission spectroscopy [I ,  3.21.221 without spin detection of the 
photoelectrons. By measuring the 5p core levels in different photoemission geometries, 
the magnetic ordering of Gd [ 19,201 and Tb [ 1,3] overlayers has been characterized. 

The initial state eigenspinors of the Tb 5p3p level mj = &3/2, are of well-defined 
electron spin character, while the 5pltz and 5p3/2, mj = &1/2 eigenspinors have mixed 
electron spin character. As a result of these differences, there are differences in the final 
state valence 5d interactions with these shallow core levels. These changes in the final state 
interactions are easily observed in angle-resolved photoemission by changing the incident 
light polarization [21,22]. The strongest manifestation of this 5d-5p coupling is a change 
in the 5p branching ratio with changes in the incident light polarization. Changing the 
incident light polarization selectively excites different symmetry states in the initial state 
eigenspinors. This can occur even without alignment of the spatial coordinate system with 
the magnetic coordinate system [ 1,21,22]. 

This probe of the magnetic ordering can be quantified on a relative scale by the ratio of 
the 5p branching ratios for p and s polarized light (/3p//3s), which we denote as the p-level 
anisotropy [1,3]. The p-level anisotropy has been measured and plotted for a variety of 
Tb film thicknesses at temperatures well above (300 K) and well below (170 K) the Tb 
Curie temperature (220 K). These results are summarized in figure 1 ,  for Tb overlayers on 
Ni(ll1) [1,3]. 

The p-level anisotropy is unity with no magnetic ordering (and neglecting crystal-field 
effects) [I]. Thus 

A Miller and P A Dowben 

BP(Z)lB&) - 9 = PMllO) (24) 

where p is an appropriate scaling constant, and 9 is unity with no crystal-field effects. It 
should be noted tha~ experimental studies indicate that q could vary from 0.82 to 1.2 [I], 
but for this discussion, this possible crystal-field effect will be ignored. 

In an earlier work we showed, using Ginzburg-Landau theory, that for T > TC 

MII(Z) Y Rexp(-rcz) (29 

where K-' is the correlation length and is equal to (CIA)'/* [I] and R is a constant The 
magnetization dependence of equation (25) can be related to the p-level anisotropy; it is 
fitted to the experimental data as also seen in figure I. 

For T < Tc, we can model the p-level anisotropy by using equations (20) and (24). 
as seen in figure 1, because M(0) i s  relatively large and z is large. These models can 
also be applied to the results for Tb on Fe(100) by Auger electron polarization studies by 
Paul and coworkers [2] as discussed in detail elsewhere for several temperatures at T < TC 
[IS]. Their experimental results for T t TC have been fitted to equation (25) as seen in 
figure 2. For T e TC their results cannot be fitted to equation (20) (as has been done for 
Tb on Ni(l1 I ) )  because the data exist only for small values of z. Rather, the data are better 
modelled by equations (16x18); the comparison is given in figure 2. 

Both sets of thickness-dependent magnetization data [1-3] can be modelled by 
equation (19) if the reciprocal of the magnetization, l /m(z) ,  is plotted versus z; the graph 
is displayed in figure 3. Such modelling indicates the validity of using mean-field theory in 
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Thicklrerr ' & I  

. 
Thickness hx"loyers) Gd Film Thicknerr imonolayerrl ~ 

Figure 3. The reciprocd magnetization data (A) for To 
on Fe(100) (taken from [18]) at 80 K and (B) for Th on 
Fe(lO0) [Z] (0) and Ni ( l l1 )  [ I ]  (+) at 170 K plotted 
versus film Ihickness for T c Tc. 

Figlire 4. The consfant initial slate (CIS) SpectrOSCOpy 
equivalent to the p-level anisotropy (less than unay) far 
Gd on Cu(l0D) taken fmm [21] and 1221. These data 
atv similar to dichmsim data obtained for 2p -earth 
core levels [23.25]. Girubwg-Landau theory has been 
used to model this data, shown as the curves. The 
data do not imply long-range magnetic order. as an 
experimental arrangement sensitive only to shon-range 
order was employed. 

. 

predicting magnetization since for Tb it does seem clear that n(z)  = l / m ( z )  varies linearly 
with z, and from equation (19a) 

~. 
n(z)  E nlz + m-'(O) nl = -mr/mo. (196) 

The data for Tb on Ni(ll1) gnd on Fe(100). for T < T,, are in good agreement when 
plotted in this manner. Note that equations (17) and (18) predict signs for the linear and 
quadratic terms in z, in the small-z expansion of m(z). The coefficient of the linear term is 
negative; for the quadratic term it is positive. As can be seen in figure 2, the best fit to the 
data of Tb on Fe(100) for this form has coefficients which agree with both signs. 

Consider ferromagnetic overlayers on paramagnetic substrates, such that a single 
monolayer exhisits enhanced magnetization, and the magnetization is restricted to be in 
plane. Then a simple model is to assume that the magnetization will go as MII(Z) = hz for 
z less than one monolayer thickness and M,l(z) = ' a / z  for z greater than one monolayer 
thickness. (The constants h and a are related by the fact that hz = a/z at z corresponding 
to one monolayer thickness.) Such a model is a result of the linear increase in moments 
up to one monolayer (following'a simple summation of moments) and the inverse decay 
beyond one monolayer that results from the analysis above, treating one monolayer as the 
ferromagnetic substrate. Enhanced magnetization for very thin films is not unknown and 
this model may be very applicable L37.381. 
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Such characteristic behaviour has been observed for Gd overlayers on Cu( 100) at T < Tc 
(220 K) [21,22] as seen in figure 4. Such a result also suggests that for this system that the 
magnetization is in-plane, though some experimental indications exist suggesting that M has 
a component (albeit small) that is normal to the surface in this system [29]. Ferromagnetic 
overlayers on ferromagnetic substrates will not agree with the Ginzburg-Landau model in 
the very-thin-film limit [18]. The failure to model overlayers much less than a monolayer 
could be associated with percolation and interface magnetization effects. 

6. Conclusion 

In summary, in spite of a large number of assumptions, the Ginzburg-Landau theory 
qualitatively describes the thickness dependence of the surface magnetization within the 
overlayer for rare-earth overlayers on ferromagnetic substrates. This model can be applied 
to ultrathin films (less than 10 monolayers thick). The agreement is surprisingly good As 
noted in a brief report [ I  81 failure of this mean-field theory (away from Tc) only appears 
to occur in the very-thin-film limit (approximately f monolayer for the rare earths). 
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Appendix 

AS pointed out below equation (15), the formal solution for the dimensionless magnetization 
m(z) ,  given in equation (15), can be re-expressed in the form of incomplete elliptic integrals 
F ( 6 ,  k). For this purpose, it is necessary to consider separately three ranges of values of s. 

Case 1: s > 1 .  Use of standard identities (see, for example, L39-411) yields fors > 1 the 
result 

where 0 = ( i ) s ' I 4 ~  and with a, defined by 

Also, 

The values of r are confined to the range 2-1/z < r < 1. 
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Case 2: 0 4 s < I .  For this case, equation (15) transforms into the form 

kz = F(4o. W) - F(&, W) (A4) 

with 

k = (~/d?)(l&)'/'. (-45) 

Also, 4z is defined by 

= m ( z ) / ( l d i T ) ' p  (-46) 

while w is given by 

w = [s-'(l -G) - fp' 
and is restricted to the range 0 6 w 4 2-'/'. 

Case 3: s < 0. Since s -+ 1 as D -+ CO, this case is only possible for very thin films. E 
s < 0, then equation (15) can be restated as follows: 

v = F(tz7 t )  - F(t03 t )  (A@ 

with q defined by 

= K(1 - S)"'. ( A 9  

The variable & is determined by 

sin' = 2 J i T / [ d i T  - 1 + m'(z)l (A101 

and the variable t is 

f = (1 - l /vT7)l/ ' .  (All)  

Note that use of equations (Al), (A4). or (AS), together with tabulated values of F ( 4 ,  k) 
allows for exact numerical integration of equation (13). A best-fit comparison between data 
and the numerical solution then enables extraction of K. Such a procedure is an alternative 
to the power-series expansion procedures described in the text. 
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